

Igus Motion Editor

Aufbau & Konfiguration

Vorläufige Dokumentation der Steuerung für robolink[®] Gelenkarme zur Verwendung der igus Software IME (igus[®] motion editor)

Version 01, Stand 10.2013 Erstellt von B.Eng. Felix Berger <u>fberger@igus.de</u> +49 - (0)2203 - 9649 - 7331

> **Igus GmbH** Spicher Straße 1a – 51147 Köln Tel: +49-(0)2203 / 9649-7331 eMail: FBerger@igus.de

1a) Stückliste Hardware

Menge	Artikel	Bezugsquelle	Bestell-Nr.	Anmerkung		
1	robolink Gelenkarm	igus				
1-6	Nanotec SMCI47-S-2	Nanotec		RS485 Bus		
1	RS485 Konverterkabel	Nanotec	ZK-RS485-USB			
1	Crumb2560 V1.1 AVR	Chip45	crumb2560-1.1	16.000 MHz +		
	ATmega Modul			Stiftleisten		
1	ATAVRISP-mkll	Chip45	avrisp2			
	Programmier Adapter					
1	Stromversorgung 5V					
1	Stromversorgung 48V			ca. 5A pro		
				Steuerung		
1	RS485 Stecker	Conrad	740389 – 05			
1	RS485 Buchse	Conrad	740631 – 05			
1	USB Kabel A -> Mini B	Conrad	975416 – 05			
1m	Flachbandkabel	Conrad	601922 – 05			
1-6 + 1	D-Sub Stecker Flachkabel	Conrad	711357 – 05			
2	D-Sub Buchse Flachkabel	Conrad	711373 – 05			
2	D-Sub Stecker Lötkelch	Conrad	742066 – 05			
1	D-Sub Buchse Lötkelch	Conrad	742082 – 05			
4	Widerstand 120 Ω	Conrad	418145 – 05			
0,5m	Leitung 5 x 0,34 mm ²	igus	CF130.03.05.UL			
1	Optokoppler	Conrad	505454 – 05			
1-6	Motorleitung	igus	CF.INI-P5-M12-			
			BW-3			

1b) Stückliste Software

Programm	Aktuelle Version	Bezugsquelle
Igus Motion Editor	v 2397	www.igus.de/robolink/software
CP210x VCP Driver	6.6.1	www.silabs.com
NanoPro	1.70.0.1	www.nanotec.de
Java-Programm NanoJEasy		www.igus.de/robolink/software

2a) Hardwarekonfiguration Crumb2560

- 1. Kontakte brücken (4x)
- 2. Quarz (16.000MHz)
- 3. RS485 Stecker (Conrad 740389-05)
- 4. Stiftleiste (6x2)
- 5. Stiftleiste (24x2 o. kürzer) (nur der markierte Bereich wird verwendet)
- 6. Stiftleiste (24x2 o. kürzer) (nur der markierte Bereich wird verwendet)

2b) Fertig bestückte Platine

3a) Bootloader installieren

- 1. AVR Programmieradapter an USB (PC/Laptop) anschließen
- 2. Treiber aus dem IgusMotionEditor-Verzeichnis verwenden (.../contrib/libusb) Bei Treibersignatur-Problemen den PC neustarten und beim Bootvorgang F8 drücken. Dort die Treibersignatur deaktivieren. Die Deaktivierung ist bis zum nächsten Neustart wirksam.
- 3. Programmieradapter an 2x6 Stiftleiste anschließen (rote Seite Richtung USB-Port)
- 4. Crumb2560 mit 5V Gleichspannung versorgen

- 5. Flashtool.exe im IME Verzeichnis ausführen
- 6. Konfiguration wie Bild vornehmen und Bootloader flashen

E FlashTool			
Programmer port	usb (e.g. AVRISP mkII)		
Microcontroller port	· · · · · · · · · · · · · · · · · · ·		
Hint: Unplug & replug devices to find	out COM port numbers!		
Programmer type	avrispmkII 🔹		
1) Flash bootloader	2) Flash firmware		
Only required once. Needs an AVR programmer.	Does not need a programmer. Just connect the microcontroller and power it (robot may be connected).		

7. Nach erfolgreichem Flashvorgang muss der Mikrocontroller dauerhaft blinken

3b) Firmware flashen

- 1. PC neustarten um Treibersignierung wieder zu aktivieren
- 2. Crumb2560 per USB Kabel mit PC/Laptop verbinden
- 3. CP210x VCP Treiber installieren
- 4. Flashtool.exe im IME Verzeichnis ausführen
- 5. Konfiguration wie Bild vornehmen und Firmware flashen

] FlashTool	
Programmer port	COM7 👻
Microcontroller port	COM7 👻
Hint: Unplug & replug devices to find	out COM port numbers!
Programmer type	avrispmkII 🔹
1) Flash bootloader	2) Flash firmware
Only required once. Needs an AVR programmer.	Does not need a programmer. Just connect the microcontroller and power it (robot may be connected).

6. Nach erfolgreichem Flashvorgang muss der Microcontroller nach dem Einschalten kurz blinken

Der Crumb2560 Mikrocontroller ist nun für den Einsatz mit dem IgusMotionEditor einsatzbereit!

$\mathsf{robolink}^{\mathbb{R}}$

Igus Motion Editor

Aufbau & Konfiguration

4) Konfiguration Nanotec SMCI47-S NanoPro

1. Motoradresse wie abgebildet auf "1" stellen

- 2. Steuerung per RS485-Konverterkabel mit PC/Laptop verbinden
- 3. Steuerung mit 48V Gleichspannung versorgen
- 4. NanoPro installieren und starten
- 5. Meldung "Konfiguration aus Steuerung lesen" immer verneinen!
- 6. Unter dem Reiter "Kommunikation" die COM-Schnittstelle des RS485 Konverters wählen
- 7. Firmware aktualisieren: System \rightarrow Firmware ändern \rightarrow wähle Firmware \rightarrow RS485 / 04-02-2011
- 8. Erfolgreiche Aktualisierung prüfen

	Datei	Sprache	Motor 1	 Motor 	System	Hilfe							
<	Steuen	ungstyp: SMCI	47-S Schnitts	stelle: RS485 Versions	datum: 04-0	2-2011	6						
Mod	lus Ma	otoreinstellung	an bremse	inzeigeneinstellungen	Fehlerkor	ektur Ein	gänge	Ausgänge	Kommunikation	Statusanzeige	CL - Parameter	Scope	Expert

- 9. Unter dem Reiter "Modus" die Steuerung in den Auslieferungszustand zurücksetzen
- 10. Steuerung neustarten
- 11. Motor \rightarrow Motor entfernen
- 12. Motor → Motor hinzufügen → Adresse "1"
 (dieser Schritt ist notwendig um alle geänderten Software-Einstellungen zurückzusetzen)

Igus Motion Editor

 Reiter Statusanzeige → Autostart aktivieren → Daten speichern → Konfiguration in Steuerung schreiben

(wenn die Autostart-Funktion fehlt, kurz zum Modus-Reiter wechseln)

14. Programm schließen und Steuerung ausschalten bzw. Schritte 1-14 für weitere Steuerungen wiederholen

5) Buskabel vorbereiten

Hinweis: Die hier aufgezeigte Busleitung ist eine schnelle und kostengünstige Alternative zu professionellen Busleitungen. Wir übernehmen keine Garantie bzgl. Störungen und Übertragungsfehler!

 Buskabel wie abgebildet konfektionieren. Pin 1 Stecker/Buchse immer auf rote Ader! 1-6x SMCI47-S Stecker – je nach Anzahl der Achsen

2. Pin 3 aller Stecker mit einer dünnen Zange entfernen. 5V Leitung wird nicht benötigt und kann Störungen verursachen.

 Abschlusswiderstände vorbereiten: 120Ω Widerstand zwischen Pin 2+7 und 4+9 D-Sub Stecker mit Lötkelch verwenden (Conrad 742066-05).

4. Verbindungsleitung Crumb2560 (igus CF130.03.05.UL) D-Sub Buchse mit Lötkelch verwenden (Conrad 742082-05).

Pin D-Sub	Pin Crumb2560
2	3
4	3
7	2
8	1
9	2

6a) Geräteanschluss Nanotec SMCI47-S-2

Vor dem Anschluss aller Leitungen und des Buskabels müssen die Motoradressen 1-6 vergeben werden.

Input 1	- NC -
Input 2	- NC -
Input 3	- NC -
Input 4	- NC -
Input 5	- NC -
Input 6	- NC -
Signal GND	GND
Output 1	- NC -
Output 2	- NC -
Output 3	- NC -
Analog In	Robolink Hall-Sensor
GND	GND
Brake	- NC -
GND	- NC -
+5 V	Robolink +5V
Channel B	Robolink Channel B
Channel A	Robolink Channel A
Index	Robolink Index
GND	Robolink GND
Winding A	Motor A - white
Winding A\	Motor A\ - brown
Winding B\	Motor B\ - black
Winding B	Motor B - blue
UB 24-48 V	+48V
GND	GND

6b) Geräteanschluss Crumb2560

Der Ausgang des Crumb2560 Controllers gibt max. 20mA / 5V aus. Es wird die Verwendung eines Optokopplers empfohlen.

7) Igus Motion Editor konfigurieren

1. Calib-Datei

Beispiel-Einstellung für ein 2-Achs RL-50-001 Gelenk

[Joint0]				
name=Pivoting	# Displayed Name			
type=X	<pre># Joint type (X = Pivoting / Z = Rotation)</pre>			
address=1	# Motor controller address			
lower_limit=-1.5708	# Lower joint angle limit in radians			
_	(Pi/180*angle)			
upper_limit=1.5708	# Upper joint angle limit in radians			
	(Pi/180*angle)			
offset=0.0	# Joint offset in radians (Pi/180*angle)			
invert=0	# Invert the axis (0 or 1)			
encoder_steps_per_turn=6400	# 360/1,8*X*i (X = 1 full-step / 2 half-step)			
	(i = gear reduction)			
motor_steps_per_turn=6400	# 360/1,8*X*i (X = 1 full-step / 2 half-step)			
	(i = gear reduction)			
max_current=30	# Current moving			
hold_current=20	# Current stop			
length=0.10	# Displayed lenght			
joystick_axis=0	# Joystick axis			
joystick_invert=0	# Invert joystick axis			
[Joint1]				
name=Rotation	# Displayed Name			
type=Z	# Joint type (X = Pivoting / Z = Rotation)			
address=2	# Motor controller address			
lower limit=-6.2832	# Lower joint angle limit in radians			
_	(Pi/180*angle)			
upper limit=6.2832	# Upper joint angle limit in radians			
	(Pi/180*angle)			
offset=0.0	# Joint offset in radians (Pi/180*angle)			
invert=0	# Invert the axis (0 or 1)			
encoder steps per turn=6400	# 360/1,8*X*i (X = 1 full-step / 2 half-step)			
	(i = gear reduction)			
motor_steps_per_turn=6400	# 360/1,8*X*i (X = 1 full-step / 2 half-step)			
	(i = gear reduction)			
max current=30	# Current moving			
hold_current=20	# Current stop			
length=0.10	# Displayed lenght			
joystick_axis=0	# Joystick axis			
joystick_invert=0	# Invert joystick axis			

2. Java-Programm NanoJEasy

Beispiel-Einstellung für ein 2-Achs RL-50-001 Gelenk

3	- cl	ass NanoJMotorControl {				
4		// for 35:1: 2, for 16:1 with old encoder settings: 0, for 16:1 with correct values: 1				
5	final static int ENCODER SHIFT = 1;					
6		final static int POSITION_BIAS = 16384 ; // has to match in μ C code				
7						
8		// function to initialize the controller				
9	3	<pre>static void initializeController() {</pre>				
10						
11		// pause register is used to communicate a state with the PC				
12		<pre>// 0 controller just started</pre>				
13		<pre>// 1 controller searching for middle position</pre>				
14		// 2 normal mode				
15		// 3 compliance mode				
10		// other, hait the motor				
10		drive.setPause(0);				
10		if (config CotVotor)ddrogg() 1) (
20	2	config SetBorencInc(310). // Encoder_resolution / gear_reduction (4960 / 16)				
21		config. Set Frender Direction (0):				
22		util.SetStepMode(2):				
23		1				
24						
25	-	if (config.GetMotorAddress() == 2) {				
26		config.SetRotencInc(290);				
27		<pre>config.SetEncoderDirection(1);</pre>				
28		util.SetStepMode(2);				
29		}				
30						
fin	al cta	ntic int ENCODER SHIET: Catriaba 16 - 1: Catriaba 25 - 2				
- 11110		the int Encoder definede 10 = 1, definede 35 = 2				
- cor	nfig.C	GetMotorAddress: Hardware-Adresse der Steuerung				
- cor	nfig S	setRotencing: Encoderauflösung / Getriebeuntersetzung				
Г.,						
EU	code	raunosung RL-50 Schwenk: 4960				
		RL-50 Rotation: 4640				

- RL-90 Schwenk: 9920
 - RL-90 Rotation: 9920

- config.SetEncoderDirection: Drehrichtung Encoder umkehren

- Fährt der Arm bei der Initialisierung langsam Richtung Anschlag, "1" verwenden
- util.SetStepMode: "2" verwenden RL-90-BL1 Rotation NEMA34 Motor: "32"

- drive.SetCurrent: Motorstrom anfangs gering einstellen

- NEMA17: Max 23% 1,8A NEMA23: Max 56% - 4,2A
- NEMA34: Max 85% 6,4A

- 3. Java Parameter auf Steuerung laden
 - COM-Port / Baudrate (115200) / Motoradresse einstellen
 - Compile Program
 - Transfer Program
 - Für 1-6 Steuerung widerholen
 - Das Java Programm wurde erfolgreich übertragen, wenn die rote LED der Steuerung dauerhaft blinkt